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Nonlinear Analysis of Phase
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Relationships
in Quasi-Optical Oscillator Arrays

ILA. York, Member, IEEE

Abstract—A dynamic theory of coupled oscillators is developed
and applied to the class of looseiy-coupled quasi-optical oscillator
arrays. This theory permits the calculation of stable, steady-state
phase relationships between the oscillators. The distribution of
free-running frequencies and the coupling parameters are most
important in determining the behavior of the arrays. It is found
that free-running frequencies of tbe peripheral elements have
the strongest influence on the steady-state phase relationships.
The influence of randomness in the frequency distribution is
considered for the case of broadside beamforming, establishing a
critical value for the coupling strength in order to maintain mu-
tual synchronization with a specified maximum beam deviation.
Techniques for simplifying the calculation of phase relationships
for some common coupling parameters are ako developed. The
theory is supported by new experiments and other published
results.

I. INTRODUCTION

Q UASI-OPTICAL power-combining is a promising tech-
nique for overcoming the inherent power limitations
of solid-state devices at millimeter-wave frequencies

[1], particularly in light of recent experimental results using
both two- and three-terminal devices [2]– [7]. Such arrays

attract interest for several reasons: they can accommodate
large numbers of devices and hence provide power levels
which have traditionally required bulky vacuum-tube devices;
high combining efficiencies are achieved by combining power
in free-space; good reliability and DC-to-RF conversion effi-
ciency are possible by virtue of the semiconductor devices;
they can be fabricated compactly with existing monolithic
technology, SQ that low cost arrays might be pmsible for

high volume applications; and the arrays degrade gracefully,

in contrast to vacuum-tube sources.
Regardless of the topology, all oscillator arrays must satisfy

two key requirements: the devices must synchronize to a
cQmmon frequency, and must maintain a desired phased
relationship in the steady-state. The former is accomplished
by coupling the devices together or to an external source,
and relies on the phenomenon of injection-locking [35]– [37].
In practice, ensuring the proper phase relationship is most
challenging. For the special case of identical unit cells [4],
[7], a certain phase-distribution can be assumed and the proper

conditions for preserving this distribution can be determined.
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However, this does not guarantee that such a phase distribution
is stable, or that it will persist in a real array when the identical
unit-cell assumption is invalid. Determining the phase relation-

ships in free-running arrays requires a dynamic analysis of the
nonlinear interactions between devices. A dynamic description
of the arrays is also required to investigate the stability of
different modes, transient effects, modulation and locking to
external signals [5], and noise properties of the arrays [36].

Considering that a single nonlinear oscillator is difficult

to analyze, a description of the dynamics of a large system
of oscillators may seem hopelessly complicated. However,
theoretical efforts in the mathematics community [21] –[31]
have shown that much of the macroscopic behavior of cou-

pled nonlinear systems can be described by relatively simple
models. This paper describes a similar dynamic theory based
on coupled Van der Pol equations, and applied to arrays
of loosely coupled oscillators. Such arrays were among the
first tQ be examined both experimentally [8] and theoretically
[9]-[10] for use as quasi-optical power-combiners, and many
suitable active antenna designs have been reported for these

arrays [14] – [20]. Coupled-oscillator arrays have also recently
been mode-locked for pulse generation [1 1]– [12], and exhibit
interesting beam-scanning properties [12] – [13]. The theory
presented in this paper can be used to determine the steady-
state phase relationships in these arrays, and tQ investigate
other dynamic effects. The theory is applied to some cases of
interest for practical quasi-optical power-combining, including
broadside beamforming, random frequency distributions, and
electronic beam-scanning. Some experimental results are then

described which examine the influence of coupling parameters
on the phase distribution.

II. COUPLED OSCILLATOR THEORY

The theory of coupled nonlinear oscillators is the subject

of increasing research activity, due to successful modelling of
many diverse biological and physical phenomena. Examples
include swarms of synchronously flashing fireflies [21], the
coordinated firing of cardiac pacemaker cells [22], rhythmic
spinal locomotion in vertebrates [23] – [24], the synchronized
activity of nerve cells in response to external stimuli [21], and

synchronized menstrual cycies in groups Qf women [25]. In

the physical sciences, examples include oscillations in certain
nonlinear chemical reactions [26], the collective behavior of
Josephson junction arrays [27] –[28], and laser diode arrays.
Almost any system of discrete or distinguishable units that
collectively exhibit macroscopic synchronous behavior can be
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modelled by a system of coupled oscillators. This is apparently
true even when the oscillators and/or the mechanisms for
coupling between them are not understood in great detail.

As Koppel [24] suggests, “. . . the behavior of oscillators,
when forced or coupled to other systems, is relatively insen-
sitive to the detailed description of the oscillators themselves
or the coupling.” Indeed, the present author’s experimental

work with coupled microwave oscillators has shown this to be
the case. The oscillators alternately used Gunn, IMPATT, and
MESFET devices, and despite the significantly different phys-
ical mechanisms responsible for the negative resistance and
gain saturation in each device, the oscillators behaved similarly

when coupled together. These observations suggest that any

simple model which is capable of generating sinusoidal oscil-

lations might adequately represent the individual oscillators in
a coupled system. One such model is the Van der Pol equation
[32], which is taken in the following sections to represent
a generic microwave oscillator. A similar phenomenological
approach will also be adopted to describe the mutual coupling
between the oscillators in an array, rather than focus on
a specific physical mechanism. In this way the following
analyses may prove useful in describing the dynamics of

other types of quasi-optical oscillator arrays [4], [7].

A. Oscillator Modelling

Many narrowband microwave oscillators can be represented
by the simple circuit shown in Fig. 1. The active device
is modelled by a lumped negative resistance (conductance),
which is embedded in a series (parallel) resonant circuit; any
reactive component of the device impedance is considered part
of the embedding network. The negative resistance Rd ( IV [) is
assumed independent of frequency, but must depend nonlin-
early on the amplitude of oscillation. The circuit equation for

Fig. 1 is

where W. is the resonant frequency of the circuit, V is the
complex (phasor) output voltage, Q is the Q-factor of the
embedding network, and I&j represents any externally injected
signals. The Q-factor is sufficiently high (Q > 10) so that the
oscillator frequency will remain close to Wo, and therefore the
amplitude and phase terms will be slowly varying functions
of time (compared with the period of oscillation). The output
voltage can then be written as

V = A(t)e~[wOt+~(tJ) = A(t)e~”tt) (2)

where A is the amplitude of oscillation, and 6 is the instan-
taneous phase. The integral in (1) can be integrated by parts
to give [37]

IVdt =
–2jv 1 dV
—+~—+ . . . .

Wo W. dt
(3)

Higher order terms can be neglected under the assumption of

slow] y varying parameters. Following Van der Pol [32], the
device saturation is modelled by a quadratic such that

1- &/R, N U(C$ - IV12) (4)
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Fig. 1. Simple model for narrowband microwave oscillators. The device
negative resistance is a function of the amplitude of oscillation, V. and the
voltagesourceVlnjaccounts for injected signals from neighboring oscillators.

where a. is the free-running amplitude of oscillation, and [t is
an empirical nonlinearity parameter describing the oscillator.
This expression is consistent with the Barkhausen Criterion for

oscillation. Substituting (3) and (4) into (1) gives a complex
form for the forced sinusoidal Van der Pol model as

Using (2), the amplitude and phase dynamics can be written
separately as

dA

{}
p~A(a~– A2)+~ARe ~

dt = 2Q 2Q v
(6a)

d(3

{}

T&
—wo+~Im —

~– 2Q v
(6b)

where Re{} and Im{ } denote the real and imaginary parts of
the bracketed expression, respectively.

B. Adler’s Equation

For low-level injected signals such that II&j I < IVI, the

oscillator amplitude will remain close to its free-running value.
Excluding an initial turn-on transient, the dynamic behavior of
the system is then governed predominantly by the differential
equation for the phase variables (6b). Writing

~nj= Ainje~(ul”’’+@’njJ= Ainje~@.,

and substituting in (6b) gives

d9 WO Ainj

z ‘Wa+i%j A
— SiIl(19inj – 0) (7)

which is a form of Adler’s equation for injection-locking

[35] -[36]. When the oscillator locks onto the injected signal,
dO/dt = Winj in the steady-state, and (7) becomes

Wi~j – Wo = ~Wlock sin ~0

W. Ainj
where AwlOCk = ——

2Q A
(8)

AwlOCk is called the locking bandwidth of the oscillator, and
AO is the steady-state phase difference between the oscillator
and injected signal. Equation (8) indicates that as the injected
signal frequency is tuned over the locking range of the
oscillator, W. + AwlOCk,the phase difference will vary between
–90° < A9 < 90°. Critics of the coupled-oscillator archi-
tecture initially cited this latter result as a serious drawback,
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Phase difference between the injected signal and oscillator output as
a function of the injected frequency, according to Adler’s equation (8).

because of the implication that any statistical discrepancies
in the oscillator free-running frequencies could produce large

phase-shifts in the array, which would reduce the power-
combining efficiency. However, as shown in Fig. 2, much of
this phase variation occurs for frequency shifts near the edge
of the locking range. Furthermore, the situation in coupled
arrays is more fortuitous, because there is a mutual interaction
between the oscillators rather than the unilateral injection
described above, and because each oscillator is coupled to

more than one neighboring oscillator. The net result is that
such phase shifts tend to average out for random frequency
distributions, provided that the frequencies do not fluctuate too
vioIently. On the other hand, these phase-shifts could also be

exploited for the purpose of electronic beam-scanning. These

topics will be explored in a later section.

C. Loosely-Coupled Sinusoidal Oscillators

For a system of coupled oscillators, the mutual interaction
between oscillators z and j is described by a complex coupling
coefficient, tc,j, which has a magnitude and phase given by

In most arrays, reciprocity will hold so that ~~j = FCji.This
coupling parameter is unitless and defined such that in a system

of N oscillators, the injected signal at the ith oscillator can
be written as

(9)

where Vi is the complex (phasor) output voltage of the ith
oscillator. For some types of coupling, such as radiative
interaction between antennas or transmission-line coupling
circuits, the Kij can be directly related to commonly used N-
port network parameters. In other cases where the coupling
mechanism is significantly more complicated or not well
understood, such as coupling through the modes of an external
cavity, this modelling approach can be considered phenomeno-
logical. In either case, simple experiments can be performed
to determine the coupling parameters for a particular system
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[43]. Using (9) and (5), the system dynamics are described by

~=1,2, . . ..N (lo)

where the subscript i denotes the ith oscillator. For simplicity,
it is assumed that all of the oscillators have approximately
the same Q- and p-factors. Writing ~ = Aie~e’ enables the
amplitude and phase dynamics to be separated as

i=l,2, . . ..N.

(ha)

(Ilb)

When E,j = O, the oscillators are uncoupled and (11) reduces
to a set of independent sinusoidal oscillators with ampli-

tudes Ai = cq and frequencies Wi. These coupled, nonlinear
equations are impossible to solve analytically in the general
case of arbitrary coupling strength, and we must resort to
computer simulations. However, considerable simplification of
(11) occurs in the limit of weak coupling, where &iJ <1. The
amplitudes of the oscillators will then remain close to their
free-running values (A t N cu), and the Phase dynamics of the
system will be described predominantly by

z:1,2, . . ..N. (12)

Because of the similarity in form and approximations used,
(12) can be viewed as a generalization of the Adler
equation (7). This equation is the basis for the coupled-
oscillator theory in this paper. Although (12) only strictly
applies in the limit of weak coupling, many of the conclusions
reached in subsequent discussions can be expected to hold far
from this limit, at least approximately [24]. This is true in

the present case because the amplitude dynamics have only
a second-order influence on the phase dynamics, which are
fundamentally more important to the operation of practical
oscillator arrays.

Under certain conditions all of the oscillators will become
synchronized to a common frequency U, so that dO,/dt = w
for all i. The steady-state frequency and phase distribution
can then be found by solving

~=1,2, . . ..N. (13)

One of the phase variables is arbitrary and can be set to zero,
so (13) describes a set of N equations with N unknowns.
As discussed in [43], the self-interaction term, eii, is not
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necessarily zero. A non-zero &i%can be used to model the
influence of external feedback elements such as quasi-optical
reflectors positioned above the array. However, it is always

possible to define a new free-running frequency, L% to account
for this term, where

[ 1w,=wi I–ssinl?ii .
2Q

Therefore, the following discussions assume that Eii = O.

D. Linear Arrays with Nearest-Neighbor Coapling

In most conceivable quasi-optical arrays, each oscillator will
interact locally with other oscillators within some finite region
surrounding the oscillator. An exception is when the array is
placed in a Fabry–Perot cavity [1], in which case there is a
global, or “all-to-all” coupling. This problem has been treated
using methods of statistical physics [26] – [27]. In the majority
of cases, however, nearest-neighbor coupling dominates. In the
following, we will consider linear chains of oscillators with
nearest-neighbor coupling described by

{

~e–@
/$ij =

ifli–jl=l

o otherwise “
(14)

Fig. 3 illustrates such a system, where each oscillator is

coupled to an antenna. Substituting this expression into (12)
gives

where a. = ~jv+l s O. Since we are primarily interested in
the case when the oscillators can mutually lock, another useful

simplification can be made by defining

Aw+$. (16)

By comparison with (8), Awm can be interpreted as the locking

range of the ith oscillator when all the amplitudes are identical.
Since the free-running frequencies w, must be close in value
on the order of Aw~ for locking to occur, then we can take
Awn to be the same for all oscillators and write (15) as

j#t
i=l, z,. ... lv. (17)

This simplification amounts to ignoring any second-order
variations in frequency and phase. In some cases, such as
mode-locked arrays [11] – [12], the frequency differences are
large enough to invalidate this assumption, and (15) must be
used.

Equations (15) or (17) can be cast in a form involving
relative phase shifts between adjacent oscillators. Defining

● 000

1 2 3 N

Fig. 3. Linear array of N active antenna oscillators with nearest-neighbor
coupling described by a coupling strength E and coupling angle Q.

A9i = 19,– 0,+1 and fl~ = wi – w~+l, and using (17) gives

and AO is a vector with elements A@,. The steady-state
solution for the phase distribution is then found by solving
the set of equations

If, (m) = * i=l,z,...,l–l (19)

which can be accomplished with standard nonlinear root-
finding algorithms [44]. Such solutions are called ji.xedpoints
[38] of (18). Since the H, are bounded, periodic functions,
there are generally no solutions to (19) unless the frequency

differences !2, fall within some small range Ifli I S Au~lI~~~.
If there are no solutions to (19) for a given set of fli, then
mutual synchronization is impossible. When there are solu-
tions, (17) can be used to find the steady-state frequency, w.

E. Stabili@ Analysis

When mutual synchronization is possible, there are usually
2N–1 different phase distributions, or modes, which satisfy
(19). However, not all of these will be stable solutions. The
stability of solutions to nonlinear equations such as (18) can be
determined by linearizing the equation around its fixed points

[38]. Assuming fi ~s a solution vector to (19), it is perturbed

by letting At9i = A@i + 6,, where the perturbation ~ is small

such that

Substituting (20) into (18), and using (19) gives the matrix
equation

d$ =.

z
= Aw.M 6 (21)
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where ~ is a vector with elements &, and ~ is an (N – 1) x

(N – 1) stability matrix with elements

(22)

For the present case of nearest-neighbor coupling, ~ is a.
tridiagonal matrix. A solution A19 is stable with respect to

small perturbations if the perturbation decays with time, which
will occur when all of the eigenvalues of the stability matrix

M have negative real parts [39]. This requirement is so
restrictive that nearly all of the solutions found from (19) will
be eliminated.

In the general case when the assumption of nearest-neighbor
coupling is invalid, or two-dimensional arrays are used instead
of linear chains, a similar perturbation analysis can be per-
formed using (12). However, since (12) is not conveniently

described in terms of relative phases as in (18), the stability
matrix will have dimensions N x N, and one of the eigenvalues

will always be zero. This is a result of the arbitrary assignment
of a phase reference. A stable solution in that case corresponds
to all but one of the eigenvalues having negative real parts [39].

III. IMPORTANTRESULTSFOR POWER-COMBININGARRAYS

Practical application of oscillator arrays require certain
phase distributions to be synthesized, and a knowledge of
how a variation in free-running parameters will affect the
array performance. A few such cases are considered here.
For notational convenience, the following discussion assumes
identical free-running amplitudes of the oscillators: CYi= 1
for2=l,2,... , N – 1. However, the following analytical
techniques can still be applied in cases where the effects of
non-uniform amplitudes are important, such as applications
requiring low radiation sidelobes, or other beam shapes that
can be synthesized by amplitude tapering according to classical
array theory [45].

A. Conditions for Broadside Phases

The output power of the quasi-optical oscillator array must
be concentrated in a single narrow beam, and focused in a
predictable direction. Typically a broadside radiation pattern is
desired, which is obtained by operating all elements in phase.
This places restrictions on the coupling angle, @, and the
distribution of free-running frequencies, Wi. Consider a chain
of N oscillators with nearest neighbor coupling. Substituting
the desired mode A8i = O into the governing equations (17)
gives

w=wl– Awm sin@

w = W2 — 2Awm sin@

w = WN. I —2Awm sin@

w=wN—~wm sin@. (23)
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These equations can be satisfied by the free-running frequency

distribution

{

w + Awm sin@w~ =
i=l or i=N

w + 2Aw~ sin@ otherwise.
(24)

For a given @ and w, the in-phase mode is obtained by setting
the central oscillators to a common frequency w+2Awm sin Q,

and slightly raising or lowering the end elements’ free-running
frequencies. The stability matrix (22) for this mode (A@i = O)

becomes

Z?= Awm Cos @

–2 1 o’
1 –2 1

1 –2 1 (25)

The matrix ~ is real and symmetric, and therefore all eigen-

1 –2,

values are real [40]. Furthermore, if such a matrix is negative-
dejinite, the eigenvalues will also be negative [40]. Since the
matrix is diagonally dominant ( Imii I > ~~=1,3#, l~ij I), it

will be negative-definite when all of the diagonal elements
are negative [41], which occurs when cos @ > 0. Therefore
a stable, in-phase mode (AOi = O) is only possible when

–90° < @ <90°. For values of coupling angle outside this
range, a similar analysis shows that the frequency distribution
(24) will enforce the mode A9~ = 180°, producing an end-fire

pattern.
In a simple array of identical oscillators with no provision

for electronic or mechanical tuning of the oscillator frequen-
cies, the above analysis indicates that the in-phase mode can
only be obtained if the coupling angle is @ = 0°. However,
in radiatively coupled arrays the coupling angle @ is set by
the antenna spacing [43], which is constrained to less than a
wavelength to suppress grating lobes in the radiation pattern.

In such cases it may be difficult to achieve @ = 0°, and
a broadside pattern can only be obtained by adjusting the
frequencies of the end elements of the array, as described
above. The frequency distribution and coupling angles required
for broadside radiation are shown in Fig. 4, The influence
of the end elements’ frequencies on the steady-state phase
distribution is a peculiar feature of coupled-oscillator systems.
It is also an attractive feature in planar arrays, since it is
generally easier to provide for tuning circuitry on the array
periphery (where space constraints are relaxed) than for central
portions of the array.

B. Analysis with Zero Coupling Phase

For arbitrary coupling phase, (17)–(19) must be solved nu-
merically for the unknown phases and synchronized frequency,
but for the special cases of@ = 0° and@ = 180° the equations
reduce to a form which can be solved by conventional linear
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Fig. 4. Free-running frequency distributions required
broadside beam (identical phases) as a function of
angle (24).

techniques. For @ = 0°, (18) become

6 9 10

to achieve a stable
the coupling phase

(~1 + L?wm[-z sin Adl + sin A192]
7,=1

-$N), =
/

0, + Aw~[sin A9,_I – 2 sin AOi + sin Adi+l]
~=z.. N-2

IO~_l + Aw~[sin A$~-2 – 2sin A6N_l]
‘i=~-1,

(26)

The sin A9, terms can now be considered independent vari-
ables. In the steady-state, (26) can be written as a matrix
equation

——
AwmA S = –D

where ~ and fi are N – 1 vectors, and
(N – 1) x (N – 1) matrix given by

sin AOI
sin ~t’2

[ sin A13N_l

/-2 1 o

[ )1 –2 1
z= “.

o 1 –2

(27)

~ is a tridiagonal

The solution for the sine vector is of course
=–l_
Afl

S’=——
Awm

and the matrix ~ has a simple inverse [23]

1

[=- 1

_ j(z – N)
—

N
i>j

ZJ

[:-] [ 121 =A-l
~1 J’1“

(28)

Clearly there are no po@~~_solutions of (28) if any element

of the column vector A O has a magnitude greater than

Awm. When there is a valid solution for the sine vector

this will correspond to 2~–1 different solutions for the phase

differences. The eigenvalues of the stability matrix must then

be evaluated, where

/ -2 Cos 9, Cos !9, 0)
Cos ’91 –2 Cos 92 Cos 83

M. . . I
\ o COS 19N-2 ‘2c0f36’N_l )

(29)

The stability constraint will remove all but one solution. For

the c~e of @ = 180°, the same (27) is obtained, but both ~

and M have the opposite sign.

C. Random Frequency Distributions

The problem of randomness in the frequency distribution is
of considerable practical importance in quasi-optical oscillator
arrays, since there will be inherent differences between devices
and circuits as a result of manufacturing tolerances. This
problem has been considered for some simple cases [26], [27],

[31]. The techniques described in [31] can be applied to (17)
for the case of nearest-neighbor coupling, identical amplitudes,
and O = 0°, and yields an estimate of the maximum “spread”
of frequencies that such a system can tolerate before the phase
distribution exceeds some specified worst case. With these
assumptions, (17) becomes

i+l

w=wi —Awm ~ Sin(d, - Oj) ~=1,2...,N (30)
j=i–1

j+%

in the steady-state. When all N equations are added, the sine
terms cancel to give

w

That is, the final locked
free-running frequencies.
of (30) gives

.

=;ik (31)
i=l

frequency is just the average of the
Similarly adding the first n equations

.
nw = E w%+ Awm sin AOn n=l,2,.. .,l– (32)2)

i=l

Denoting the ntb partial sum of frequencies by

n

Yn=~wi (33)
2,=1

then (32) becomes

–Awm sin AQn = Y. – ~ Y~ n=l,2, . . ..l —l.

(34)

In the present case, identical free-running frequencies will
produce a broadside radiation pattern. If the frequencies are
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randomly distributed around this ideal, then a random phase

distribution will result which generally shifts the beam away

from broadside. Suppose that a worst-case scan angle of + can

be tolerated, corresponding to an average phase shift of A&e.
Equation (34) implies that this constraint can be satisfied if

Aw~ is greater than some critical value,

i
Awm 2 Ma

Y. - ~ YN
n=l,2, . . ..N (35)

sin Aq$ave

where Ma+. . .I denotes the maximum value of the argument

over the range of n. When Isin A@av, I = 1, (35) provides
a condition for mutual synchronization. The Yn define a
random walk, so that the critical value for Awm depends
not only on the spread of free-running frequencies but also
how they are arranged or distributed over the array. It has
been shown that the “worst” distribution for a given set of
frequencies is when they are arranged in order of increasing or
decreasing frequency [31]. This fact can be used to determine
the maximum tolerable frequency variation for a given lock-
ing range.

Fig. 5 shows the results of a numerical solution of (17)

for 20 oscillators with a random frequency distribution cen-

tered around 10 GHz, and using a fourth-order Rungs–Kutta
routine [44]. In this simulation, a coupling strength of e =

0.1 was chosen, with Q = 10, giving a locking range
of Awm % 50 MHz. The oscillator frequencies shown in
Fig. 5(a) were chosen with a random number generator, in the
range 10 + 0.01 GHz. The maximum value of the numerator
in (35) is 21 MHz for this distribution, indicating that mutual

synchronization will occur, with a maximum possible (worst
case) average phase shift of A#.v. = sin–l (21/50) = 25°,
corresponding to a maximum scan angle deviation of ~ = +8°

from broadside for half-wavelength spacing (36). Fig. 5(b)

shows the array factor calculated from the steady-state phase
distribution at the end of the simulation, and normalized to
an ideal broadside pattern. The array factor clearly shows a
single main lobe, and is well within the worst-case scan angle
deviation predicted by the theory.

In their paper, Strogatz and Mirollo [31] also derive an

expression for the “probability of locking” for one- and two-
dimensional arrays with randomly distributed frequencies and
nearest-neighbor coupling. They are able to show that for a
fixed Aht, the probability that the array wilI lock to a single
frequency tends to zero as the number of oscillators goes to
infinity. This is primarily due to the assumption of nearest-
neighbor coupling—as the array gets larger, it takes longer
for elements on opposite ends of the array to communicate
with each other. To ensure that mutual locking will occur, the
coupling strength must increase at the rate of m. That is, a
100-element linear array with random frequencies will require

a coupling strength that is @ times bigger than a 10-element
linear array with random frequencies. This is also true for a
two-dimensional array, but the required locking range is then
reduced by a factor of 2 since each oscillator generally has
twice as many nearest-neighbors.

The above analyses reinforce our intuition that a large
locking bandwidth is desirable for each array element. This can
be achieved by increasing the coupling strength, or decreasing

‘0”0’5~
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(a)

Angle, degrees

(b)

Fig. 5. Results of a numerical integration of (15) for twenty X-band oscilla-
tors, with a random free-running frequency distribution and Atiw = 50 MHz.
(a) Oscillator frequencies at the start of the simulation (free running) and
after approximately 1 KS (steady-state), indicating mutual synchronization has
occurred. (b) Array factor computed from the steady-state phase relationship.

the Q-factor of the individual oscillators. For large arrays, it
may be necessary to place the array in a high-Q Fabry–Perot
cavity, whi<h would effectively extend the oscillator interac-
tion beyond nearest-neighbors and also increase the strength
of the mutual coupling. However, this would reduce the
modulation bandwidth of the array. This power-bandwidth
tradeoff needs to be more carefully explored.

D. Beam-Scanning

Since the free-running frequency distribution has such a
strong influence on the steady-state phase relationships, it is
natural to investigate the possibility of exploiting this effect
for beam scanning. In a phased antenna array, the radiation

pattern is “steered” in a particular direction by establishing a
constant phase progression along the array. For a linear array,
steering the beam to an angle @ off broadside requires a phase
shift A@ between adjacent elements of [45]

(36)
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Fig. 6. Results of a numerical integration of (15) for 10 X-band oscillators,
with LWJ~ = 50 MHz. (a) Free-running frequencies chosen from (37) lead
to (b) a scanned beam as predicted.

where d is the antenna spacing and AO is the free-space
wavelength. Equation (17) can be used to show that a constant
phase progression, Adi = A~, can be achieved by using the
frequency distribution

{

w + Awm sin(@ + Ad) if i = 1
Wi = w+2Aw~sin@cos A~ ifl<i<N (37)

w+ Awmsin(@– A@) ifi=N.

For the case of Ad = 0°, (37) reduces to the frequency
distribution (24). Although (37) indicates that any phase shift
Ad can be obtained, a stability analysis puts limits on this
quantity. For the special case of @ = 0°, the limits are
–90° < ~ < 90°, and the constant phase shift is created
by slightly detuning the end elements of the array by equal
amounts but in opposite directions. This is illustrated in Fig. 6
for a 10-element array with @ = 0° and Awm = 50 MHz.
The end elements were tuned to 10 + 0.045 GHz, giving
Ad == –64.2°. For an array with antenna spacing d = Ao/2,
this phase shift scans the beam to @ % – 21° from broadside,

as shown in Fig. 6(b). This new beam-scanning technique is
discussed in more depth in another publication [13].

Beam-scanning through control of the end-elements of
a coupled oscillator array was also proposed by Stephan
[9]-[10], although in different form. In that approach, the
first and last oscillators in an array are locked to two external
signals which have a prescribed phase difference. This phase

difference is then divided equally along the chain. For large
arrays, only small phase shifts could be obtained. In contrast,
the phase shift obtained with the present method is independent
of the number of oscillators. Interestingly, the present situation
was also considered in explaining the spinal locomotion of
eels and fish [23], where the constant phase progression was
interpreted as a traveling wave on the chain, corresponding
to swimming action.

IV. EXPERIMENTALRESULTSWITHA FOUR-ELEMENTARRAY

Although the theory has not yet been exhaustively tested,
several published experimental results correlate well with
the predictions of the previous sections. These experiments
have used a variety of active antenna designs [14] –[19].
In [43], a simple technique was described for characterizing
the coupling parameters c and @ experimentally, and a two-
oscillator system was subsequently explored which verified the
present theory for that special case. Two X-band, 4 x 4 active
patch arrays using Gunn diodes and MESFET’S were also suc-
cessfully built [3], demonstrating that mutual synchronization

can occur with the desired phase distribution in the presence of

small random frequency deviations. These arrays were capable
of locking to an incident propagating beam, and were shown
to degrade gracefully as certain elements were shut down to
simulate device failure. A small array of oscillators coupled
by one-wavelength transmission lines has also been built [19],
demonstrating that in-phase operation is achieved when @ =

0°. Although a different design methodology was used in the
periodic spatial combiner of [7], it can similarly be modelled as
a chain of coupled oscillators with @ = 0°. Most recently, the
beam-scanning technique discussed in Section III-D has been
verified experimentally using a small chain of four MESFET
oscillators [13].

In this section, a few additional results are described using a
four-oscillator system which similarly correlate welI with the
theory. In particular, the influence of the coupling phase @ is
explored. For the simple case of four oscillators with iden-
tical free-running parameters, (19) can be solved analytically
giving

-()(
AO1 ~ sin-l(+ tan Q)

Ao = A82 = o, T

)

or
A03 –AOI

(@–Cos-1 + d 4c0s4@–sin2@
4 Cos 20

)

+ sin-1[2 sin @ COS(O – A6’1)] . (38)

7r-2@+A01

These solutions represent eight unique phase distributions, tak-
ing account of the various combinations of signs and the multi-
valued inverse-trig functions. The stability matrix is given by
(39) at the bottom of the next page. Stable solutions have been
calculated for several values of 0, and listed in Table I. The
normalized frequency deviation Aw/Awm = (w – wo)/Awm
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T~LE I
THEORETICALPHASEDISTRIBUTIONINA FOUR-ELEMENTCHAINWITS IDENTICAL

FREE-RUNNINGPARAMETERS,AS A FUNCTIONOFTHE COUPLINGANGLE @.

@=q5 0= 1800-4

+ AO1 A8z A93 &- Ael Ae~ A03 ~
m

0° 0° 0° 0° 0% 180° lm” 180” 0%

10” -5.1” 0“ 5.1” -26.OyO -174.9” 1s0” 174.9° 26 .0%

20” -10.5” 0° 10.5” -50.VO -169.5° 180° 169.5° 50.7%

30” -16.8” o“ 16.8” -72.9!% -163.2° 180” 163.29 72.9%
I , , , I 1

40° -24.8° 0° 24.8° -90.5% -155.2° 180” 155.2° 90.5%

50” I -36.6” I 0° I 36.6° I -99.8% I -143.4° I 1843” 143.4° 1 99.8%
L , , , , , , , I

o“ 60°
60”

60° 180° 120” 120”

-60” -60° o“
-86.6% -1200

-1’ZO”
86.6%

180°

11.3° 77.7° 51.3”
70”

168.7” 102.3°
-85.4%

128.7°

-51.3” -77.7” -11.3” -128.7” -102.3° -168.7°
85.4%

20.5° 87.0° 40.5”
80°

159.5” 93.0” 139.5°
-86.2~0

-40.5” -87.0° -20.5° -139.5” -93.0” -159.5”
86.2%

90° No Stable Solution
I

is also listed, where W. is the free-running frequency common

to each oscillator. Notice that for@ <60° and@ >120°, there

is only a single stable mode which produces a symmetrical

radiation pattern; that is, if the oscillators are numbered in the

opposite sequence, the same phase distribution is obtained.

However, in the range 60°< @ <120°, there are two stable

modes which correspond to asymmetrical radiation patterns.

Since both are stable modes, the mode which actually occurs

will be dependent on the initial conditions at startup. This is

an interesting result, although clearly undesirable in a practical

array, suggesting that coupling angles in this range should

be avoided.

A small array of radiatively coupled active patch oscillators

was fabricated as shown in Fig. 7. Individual X-band Gunn

oscillators [14], [15], [18] were mounted on small aluminum

carriers, which were then secured to a larger block through a
long slot. This slot permitted the carriers to be moved along

one dimension, so that the spacing between the oscillators

could be varied. Since the coupling parameters in radiatively

coupled arrays depends primarily on the antenna separation,

the coupling angle could be changed over a wide range

using this setup. The coupling parameters were characterized

as a function of the oscillator spacing using the technique

described in [43]. The oscillators were tuned to a free-running
frequency of 11 GHz, and were coupled in the E-plane [43].

The coupling parameters were found to be well approximated

by the model E’(x) = A/koz and Q(3) = koz + ~, where

#(z) s e(z) /2Q, x is the antenna spacing, k. is the free-

space propagation constant, and A = 0.01 and ~ = –80°.

Aluminum block Oscillators on moveable carriers

s

Fig. 7. Illustration of the experimental array used to explore the influence
of the coupling angle 0. X-band Gunn oscillators using patch antennas [14]
were individually mounted on small aluminum carriers such that the spacing
(and hence coupling parameters) could be varied.

Measured radiation patterns, mrmbined with simple array
theory [45], offer an excellent means for determining the
phase relationship in the array. Measured radiation patterns
for three different oscillator spacings of d, = 15,20 and
35 mm, corresponding to coupling phase angles of @ =
120°,180°, and 360°, are shown in Fig. 8. Theoretical patterns
based on the phase distributions of Table I, a 4 x 1 array
factor, and a simple patch radiation model [46] are plotted
on these graphs for comparison. Elements of the array were
found to have nearly identical characteristics, except for one
element whose output power was —3 dB down from the
others; this is accounted for in the theoretical array factor.
Good qualitative agreement is observed between theory and
experiment regarding the number and placement of lobes
and nulls in the patterns, which is a clear indication that
the theoretical phase distribution is correct. Discrepancies in
magnitude can be partly attributed to the simplistic model used

for the patch radiation pattern as well as the deviations in
free-running parameters from their assumed values

For the case of@ = 120° in Fig. 8(a), Table I indicates that
there are two different modes which are mirror images of each
other. Only one of these was consistently observed, perhaps
because of the slight asymmetry caused by the oscillator
with smaller amplitude. Note also that a coupling phase of
@ = 0° could only be obtained with spacings greater than
a wavelength, which explains the grating lobes in Fig. 8(c).
As mentioned earlier, this is a common affliction in such ra-
diatively coupled arrays. In the future, methods for increasing

the coupling strength and controlling the coupling phase with
planar circuitry will be explored.

V. CONCLUSIONS

A simple theory describing the dynamics of loosely-coupled
nonlinear oscillators has been shown to adequately describe the
phase relationships in practical arrays. The theory indicates
~hat the free-running frequency distribution has a profound
effect on the steady-state phases, as does the coupling phase

‘(
–2 cos @cos A(31 COS(@+ A@z) o

M= cos(@ – A81) –2 COS@COSA9z

)

COS(!O+ A03) .
0 COS(@– A6z) –2 COS @ COS A03

(39)
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Measured and theoretical radiation patterns for three different cou-
pling angles. Spacings of (a) 15 mm, (b) 20 mm, and (c) 35 mm produced
coupling phases of @ = 120°, @ = 180°, and ‘i@= 360°, respectively,
according to the models described in [43]. The theoretical patterns used a
simple model for the patch radiation pattern [46].

angle. Frequency distributions for obtaining broadside beams
or scanned beams were derived, showing that end elements
are primary contributors to the phase relationships. It was also
shown that if the frequencies are distributed randomly, there
exists a critical value for coupling strength below which no
locking can occur. Similarly, a worst-case scan angle deviation
can be predicted from the random distribution. Thus a practical
array can tolerate a certain amount of randomness as a function
of the coupling parameters and design constraints.

This theory will also be useful in exploring other dynamic
effects in arrays. Modulation speed is an important criterion
which has yet to be investigated, along with the related issue

of locking to an external signal, which can be an incident
plane wave or a signal directly applied to one oscillator of
the system. The noise properties of the array are also of
interest, as it is unclear whether the noise of an ensemble
of devices will be better or worse than a single device. Locking
the array to a low-power, low noise master oscillator may be
required. The influence of non-nearest neighbor coupling must
also be investigated, since this permits the arrays to degrade
gracefully. This includes the use of a Fabry–Perot cavity.

The dynamics of two-dimensional arrays were not considered
in this paper for notational convenience, but clearly most
practical arrays must be two-dimensional to accommodate

enough devices. There are also published modifications to
the Van der Pol model [33] – [34] which could be used to
represent microwave oscillators more realistically. Many of
these possibilities are currently under investigation.
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